
An integer programming approach to
RuneQuest 3e training calculations

Timothy Rice

2018

Contents

1 Introduction 2

2 Hours required for multiple increases 3
2.1 Notation . 3
2.2 The case when s0 > 0 . 3

2.2.1 Examples . 5
2.3 The case s0 ≤ 0 . 6

3 Increases attained after set hours 9
3.1 When s0 > 0 . 10

3.1.1 If 2s0 − i = 0 . 10
3.1.2 If 2s0 − i 6= 0 . 11

3.2 For general values of s0 . 12
3.3 A summarised procedure . 13

3.3.1 If s0 < 1 . 13
3.3.2 If s0 = 1 . 14
3.3.3 If s0 > 1 . 14

4 Conclusion 14

A Tabulated results 15

B Plots 17

References 17

1

1 Introduction

RuneQuest 3rd Edition (1) features a dynamic skill system that allows char-
acters to improve skills if and only if they exert those skills. This can be
through practical experience—for example, if you successfully use first aid
during combat, you will unlock a chance to improve your character’s first aid
skill. Another way to exert a skill is to devote quiet periods in a character’s
life to researching and training in the skill. One convention is to allow fifty
hours training for each week in which the character is not actively adventur-
ing.

This document will focus on the mechanics of training, rather than of
practical adventurous experience.

Each time you want to increase a skill through training, your character
must invest a pre-determined number of hours based on the current skill
rank. Each such increase is small by itself, but the process can be repeated
an arbitrary number of times, so long as hours are available.

As the skill increases, each increment takes more training time to com-
plete. This algorithm admits fast increases for low-ranked skills, but those
unwilling to go on adventures will find ultimate mastery recedes beyond their
reach.

Formally, the training procedure goes like so:

1. Decide in advance whether your skill increase will take the form of a
random 1 D 6 − 2 increase, or a deterministic increase by exactly 2%.
(Naturally you can’t roll the random outcome first and then take the
2% if the roll is bad.) Let the outcome of this decision be called i.

2. Let the current skill be denoted s (which is always an integer).

• If s ≤ 0 then one hour is required to raise the skill by an amount
equal to i.

• Otherwise if s ≥ 1 the amount of training required to increase the
skill from s% to (s+ i)% is s hours.

Since the expected value of 1 D 6 − 2 = 1.5, most people will choose to
take the flat 2% increase. As such the present document will elide discussion
of the stochastic case.

At this point, those wishing to chart the course of their character’s future
progression will take interest in questions such as:

• If I want to increase a particular skill to a desired level, how many
hours do I need to invest?

2

• If I have h hours to invest in a skill, what progression will I see?

Past efforts to answer these questions have involved manual iteration or
computational simulation of the training process. Although such methods
have their place in problems that resist analytical solutions, it turns out that
closed-form expressions can be derived which answer the questions once and
for all.

2 Hours required for multiple increases

In this section we explore the first question; the results we obtain will prove
useful for answering the second question.

We first require some notation, then will consider the simplest case when
the starting skill is greater than zero. This will ultimately lead to a general
formula that encompasses any starting skill, as well as tolerating deviations
from the RuneQuest 3e canonical rules.

2.1 Notation

For a given skill that we want to increase repetitively, let sn denote the
skill rank after the nth increase; it is consistent with this definition to have
s0 represent the pre-training skill percentage. The following fact is worth
noting:

sn = s0 + in. (1)

Analogously to sn, let tn denote the cumulative time to achieve the nth

increase. For example, if we start from s0 = 0 it will take an hour to increase
the skill to two. Then s1 = 2 and t1 = 1. Without loss of generality, assume
t0 = 0.

2.2 The case when s0 > 0

Let’s begin with an example where s0 = 1. Clearly, t1 = s0 = 1; then
s1 = s0 + i which will bring the skill up to three (using i = 2). The training
required to achieve the next improvement is thus also three, or t2 = t1 +s1 =
1 + 3 = 4 hours.

In other words, starting with a skill of 1%, we have invested four hours
to achieve two improvements, bringing the skill up to 5%. Not bad for one
morning’s work!

Putting it together we can see a pattern emerge:

3

t1 = s0

t2 = t1 + s1

= s0 + s0 + i

= 2s0 + i

t3 = t2 + s2

= 2s0 + i+ s0 + 2i

= 3s0 + 3i

t4 = t3 + s3

= 3s0 + 3i+ s0 + 3i

= 4s0 + 6i

t5 = t4 + s4

= 4s0 + 6i + s0 + 4i

= 5s0 + 10i.

Notice how the coefficient of s0 is incrementing by one at each step, but
the coefficient of i is forming a pattern that looks suspiciously like triangular
numbers:

1 = 1

1 + 2 = 3

1 + 2 + 3 = 6

1 + 2 + 3 + 4 = 10.

The triangular numbers are also called binomial coefficients, and there
exists a concise notation to express them:(

n

2

)
=
n(n− 1)

2
.

By substituting into this formula, we can see that
(
1
2

)
= 0,

(
2
2

)
= 1,(

3
2

)
= 3,

(
4
2

)
= 6, and

(
5
2

)
= 10. These all match the coefficients of i calculated

above.
Such observations lead us to postulate a general formula for tn:

tn = ns0 +

(
n

2

)
i.

4

We can use induction to prove it holds not just for these few n but for all
integer n > 0, so long as s0 > 0.

Lemma 2.1. Assume we have an example n for which we know that tn =
ns0 +

(
n
2

)
i. (We already showed above that such examples exist.)

Now consider tn+1, which we know can be calculated as tn+1 = tn + sn.
(I.e. if we’ve already worked at this skill for tn hours, it is going to require
another sn hours to achieve the next skill increase.)

Then,

tn+1 = tn + sn

= ns0 +

(
n

2

)
i+ s0 + ni

= (n+ 1)s0 +
n(n− 1)

2
i+

2n

2
i

= (n+ 1)s0 +
n(n− 1) + 2n

2
i

= (n+ 1)s0 +
n(n− 1 + 2)

2
i

= (n+ 1)s0 +
(n+ 1)n

2
i

= (n+ 1)s0 +

(
n+ 1

2

)
i

This follows the same pattern as noticed for tn but all n have increased
by one; thus by induction it is proved to be a general formula for all n > 0.

2.2.1 Examples

Suppose we currently have a skill at 5% and we want to increase it 2% at a
time until we obtain 15%. Then we use s0 = 5, i = 2, and n = 5:

t5 =

(
ns0 +

(
n

2

)
i

)∣∣∣∣
n=5

= 5× 5 +
5× (5− 1)

2
× 2

= 25 + 20

= 45.

Thus our character would need to spend most of a week to achieve this
improvement.

5

Using the same formula, a character with a current skill of 50% would
have to spend an entire week of training to go up to 52%.

2.3 The case s0 ≤ 0

Observe the case when s0 = 0:

t1 = 1

s1 = i

t2 = t1 + s1

= 1 + i

s2 = 2i

t3 = t2 + s2

= 1 + i+ 2i

= 1 + 3i

s3 = 3i

t4 = t3 + s3

= 1 + 3i+ 3i

= 1 + 6i

We see the same pattern of binomial coefficients; the proof that tn =
1 +

(
n
2

)
i for all n > 0 is left as an exercise for the reader.

More generally, if s0 ≤ 0, we need to increase it an hour at a time until it
is positive, and then we can expect to see the usual progression of binomial
coefficients begin.

We can establish a general formula if we first define some more notation.
Let:

• x∨y denote the maximum of x and y and let x∧y denote the minimum.
(This notation is commonly used in probability theory.) Example: −2∨
1 = 1; −2 ∧ 1 = −2. (This will be useful for imposing a minimum of
one hour training even if the current skill is negative.)

• |x| denote the absolute value: |−2| = 2. That is, turn any negative
numbers into positive numbers.

• bxc denote the floor function, which means rounding down. Examples:
b2.718282c = 2; b3.1415927c = 3; b−3.1415927c = −4.

6

• I(x) denote the indicator of expression x, which equals one if x is
true and 0 otherwise. Example: I(3 ≤ 0) = 0 because 3 � 0; but
I(3 > 0) = 1 because it is true that 3 > 0.

Using that notation, we can explore the progression of tn like so:

t1 = 1 ∨ s0
t2 = t1 + 1 ∨ s1

= 1 ∨ s0 + 1 ∨ (s0 + i)

t3 = 1 ∨ s0 + 1 ∨ (s0 + i) + 1 ∨ s2
= 1 ∨ s0 + 1 ∨ (s0 + i) + 1 ∨ (s0 + 2i)

...
...

...
...

...

tn = 1 ∨ s0 + 1 ∨ (s0 + i) + . . .+ 1 ∨ (s0 + (n− 1)i)

=
n−1∑
j=0

1 ∨ (s0 + ji). (2)

Now let λ be such that sλ−1 ≤ 0 but sλ > 0; after a little thought we
realise this can be calculated as:

λ = I(s0 ≤ 0)

(⌊
|s0|
i

⌋
+ 1

)
.

(The indicator at the front sets λ = 0 whenever s0 > 0.)
For example, if you start with a skill at −3%, you need to raise it to

−1%, then raise it again to 1% before it will become positive, thus we expect
λ = 2; and indeed:

λ =

⌊
|−3|

2

⌋
+ 1

=

⌊
3

2

⌋
+ 1

= b1.5c+ 1

= 1 + 1

= 2.

With this notation defined, we can decompose the sum in formula (2) as:

7

tn = I(λ > 0)

(λ∧n)−1∑
j=0

1 + I(n > λ)
n−1∑
j=λ

(s0 + ji)

= I(λ > 0)(λ ∧ n) + I(n > λ)

(
(n− λ)s0 + i

n−1∑
j=λ

j

)

= I(λ > 0)(λ ∧ n) + I(n > λ)

(
(n− λ)s0 + i

n−λ−1∑
k=0

(k + λ)

)

= I(λ > 0)(λ ∧ n) + I(n > λ)

(
(n− λ)s0 + i

(
n− λ

2

)
+ (n− λ)iλ

)
= I(λ > 0)(λ ∧ n) + I(n > λ)

(
(n− λ)(s0 + iλ) + i

(
n− λ

2

))
.

However, we can note that I(λ > 0)(λ∧ n) = λ∧ n regardless of whether
λ > 0. Additionally, we can re-express λ ∧ n in a form that will facilitating
collecting terms, admitting further simplification:

λ ∧ n = I(n > λ)λ+ I(n ≤ λ)n

= I(n > λ)λ+ (1− I(n > λ))n

= I(n > λ)(λ− n) + n

= n− I(n > λ)(n− λ). (3)

Using equation (3) we can now rewrite tn in the form:

tn = I(λ > 0)(λ ∧ n) + I(n > λ)

(
(n− λ)(s0 + iλ) + i

(
n− λ

2

))
= n− I(n > λ)(n− λ) + I(n > λ)

(
(n− λ)(s0 + iλ) + i

(
n− λ

2

))
= n+ I(n > λ)

(
(n− λ)(s0 + iλ)− (n− λ) + i

(
n− λ

2

))
= n+ I(n > λ)

(
(n− λ)(s0 + iλ− 1) + i

(
n− λ

2

))
. (4)

8

In the case i = 2, this simplifies further:

tn = n+ I(n > λ)

(
(n− λ)(s0 + iλ− 1) + i

(
n− λ

2

))
= n+ I(n > λ)

(
(n− λ)(s0 + 2λ− 1) + 2

(
n− λ

2

))
= n+ I(n > λ) ((n− λ)(s0 + 2λ− 1) + (n− λ)(n− λ− 1))

= n+ I(n > λ)(n− λ)(n+ s0 + λ− 2). (5)

Finally, when s0 > 0 (which is most of the time) it reduces to:

tn = n+ n(n+ s0 − 2)

= n(n+ s0 − 1). (6)

3 Increases attained after set hours

The inverse problem to the previous section is to set in advance the number
of hours that may be allocated to increasing a skill, and then ask what will
this raise the skill too. Again we assume that i is a fixed positive integer, n
is a non-negative integer, and the sn are integers. We also let h denote the
fixed number of hours allocated for training the skill in question.

The problem amounts to finding the n satisfying the following two con-
straints:

tn ≤ h

tn+1 > h

That is, what is the n such that if we train that many times, we will not
run out of hours, but if we try to do any more training (i.e. n+ 1 times) we
will exhaust the available hours and not be able to complete the final round?

This is equivalent to maximising n subject to the constraint that tn ≤
h; amongst mathematicians this is referred to as an integer programming
problem.

To solve this integer programming problem, it shall be useful to partition
the available hours into two parts: those used bringing the skill up to above
zero (if possible), and those which apply to skills already above zero.

This intuition motivates some new notation: let h− be hours spent on the
skill while it is non-positive, and let h+ be any remaining hours spent on the
skill after it becomes greater than zero. If s0 > 0, h− = 0 and h = h+.

We also note that if h < λ, then automatically we should set n = h.

9

3.1 When s0 > 0

Regardless of whether in fact s0 > 0, solving this case allows us to also solve
for h+ in the more general case described above.

We start with the inequality constraint tn ≤ h and unpack it using the
general formula (4); then use λ = 0 to obviate the indicator; then notice the
quadratics; which motivates completing the square; before taking the square
root of both sides:

tn ≤ h

⇒ n+ n(s0 − 1) + i

(
n

2

)
≤ h

⇒ ns0 + i
n(n− 1)

2
≤ h

⇒ i

2
n2 +

(
s0 −

i

2

)
n ≤ h

⇒ n2 + 2
2s0 − i

2i
n ≤ 2h

i

⇒ n2 + 2
2s0 − i

2i
n+

(
2s0 − i

2i

)2

≤ 2h

i
+

(
2s0 − i

2i

)2

⇒
(
n+

2s0 − i
2i

)2

≤ 2h

i
+

(
2s0 − i

2i

)2

.

We have two cases to consider here:

• If 2s0 − i = 0, the inequality immediately simplifies to n2 ≤ 2h
i

.

• On the other hand, if 2s0 − i 6= 0, that will allow us to bring together
the 2s0−i

2i
terms from both sides.

3.1.1 If 2s0 − i = 0

In this case 2s0 = i, so the inequality devolves to:

n ≤ ±
√

2h

i

⇒ n ≤ ±
√

2h

2s0

⇒ n ≤ ±
√
h

s0
.

10

Rejecting the solution where n < 0, this becomes,

n ≤
√
h

s0
.

Then maximising n while satisfying this inequality leads us to the solu-
tion:

n =

⌊√
h

s0

⌋
.

For example, take s0 = 1, i = 2, so that 2s0 = i is satisfied. Now
suppose h = 50. Then n = b

√
50c, where

√
50 ≈ 7.07, leading to the result

n = b7.07c = 7.
This concords with a manual calculation which show that in a week of

training, a character starting with a skill at 1% could raise that skill seven
times, achieving 15% by the end of the week.

3.1.2 If 2s0 − i 6= 0

In this case the earlier full inequality (4) can be manipulated like so:

n+
2s0 − i

2i
≤ ±

√
2h

i
+

(2s0 − i)2
4i2

⇒ n+
2s0 − i

2i
≤ ±2s0 − i

2i

√
8hi

(2s0 − i)2
+ 1

⇒ n ≤ −2s0 − i
2i

± 2s0 − i
2i

√
8hi

(2s0 − i)2
+ 1

⇒ n ≤ 2s0 − i
2i

(
−1±

√
8hi

(2s0 − i)2
+ 1

)
. (7)

The square root is always strictly greater than one, so we always end up
with a single positive and single negative solution. Again we need to deal
with it as two separate cases: 2s0 − i > 0 and 2s0 − i < 0.

Case One: 2s0 − i < 0: In this case the positive solution is obtained by
choosing:

11

n ≤ 2s0 − i
2i

(
−1−

√
8hi

(2s0 − i)2
+ 1

)

⇒ n ≤ i− 2s0
2i

(
1 +

√
8hi

(2s0 − i)2
+ 1

)
.

When i = 2 the only time this case arises is when s0 = 0. Since we need
to treat any s0 ≤ 0 as a special case regardless of i, we will defer further
discussion of this scenario until Subsection 3.2.

Case Two: 2s0 − i > 0: In this case the positive solution is chosen by
writing the inequality (7) as:

n ≤ 2s0 − i
2i

(
−1 +

√
8hi

(2s0 − i)2
+ 1

)
.

Again electing for i = 2:

n ≤ s0 − 1

2

(
−1 +

√
4h

(s0 − 1)2
+ 1

)
.

An example with an initial skill of 5% and a week of training:

n ≤ 4

2

(
−1 +

√
200

16
+ 1

)

⇒ n ≤ 2

−1 +

√
27

2︸ ︷︷ ︸
≈3.67

⇒ n = b5.35c
⇒ n = 5.

Thus after a week, a character starting with a skill of 5% could raise it
five times, to a total of 15%.

3.2 For general values of s0

We’ve already established that h can be decomposed as h = h−+h+. It turns
out they should furthermore have values h− = h ∧ λ and h+ = 0 ∨ (h − λ).
This is based on an intuitive realisation:

12

• If you have a negative skill, you can pump hours into it until it becomes
positive, if the hours are available.

• If you do this, it removes hours from your total training time.

Just as we decompose h into h− and h+, we now do the same for n: let
n− be number of improvments obtained for the skill by spending hours from
h−, and let n+ be the number of improvements obtained by spending hours
from h+.

Since hours from h− are spent one at a time, we must have that n− = h−.
It is also useful to let s+0 denote the skill percentage after spending h−

hours on improving it. That is, it is the value of the skill immediately after
it switches from non-positive to positive.

We can use the formula s+0 = s0 + n−i since we gained i% for every hour
spent on the skill while it was non-positive.

For n+, we reuse the formulas derived for s0 > 0:

n+ =

⌊
i−2s+0

2i

(
1 +

√
8h+i

(2s+0 −i)2
+ 1
)⌋

if s+0 <
i
2
.⌊√

h+

s+0

⌋
if s+0 = i

2
.⌊

2s+0 −i
2i

(
−1 +

√
8h+i

(2s+0 −i)2
+ 1
)⌋

if s+0 >
i
2
.

(8)

Or when i = 2 (eliding the case s+0 < 1 since that is subsumed by n−):

n+ =

⌊√

h+

s+0

⌋
if s+0 = 1.⌊

s+0 −1
2

(
−1 +

√
4h+

(s+0 −1)2
+ 1
)⌋

if s+0 > 1.
(9)

3.3 A summarised procedure

We’ll now summarise what needs to be done when using the standard i = 2.

3.3.1 If s0 < 1

1. Calculate λ =
⌊
|s0|
2

⌋
+ 1.

2. Calculate h− = h ∧ λ and h+ = 0 ∨ (h− λ).

3. Calculate n− = h−.

4. Calculate s+0 = s0 + 2n−.

5. Calculate n+ =
⌊√

h+

s+0

⌋
if s+0 = 1 or n+ =

⌊
1−s+0

2

(
1 +

√
4h+

(1−s+0)2
+ 1
)⌋

otherwise.

13

3.3.2 If s0 = 1

n =

⌊√
h

s0

⌋
.

3.3.3 If s0 > 1

n =

⌊
s0 − 1

2

(
−1 +

√
4h

(s0 − 1)2
+ 1

)⌋
.

This procedure lends itself to programmatic automation; a reference im-
plementation can be found at (2). A table of results generated from that
program is in Appendix A; likewise, a plot of cumulative time required per
skill percentage attained is in Appendix B.

4 Conclusion

We derived novel closed-form expressions for certain quantities of interest
to RuneQuest players. There are a couple of directions future work of this
nature could explore:

• Analysis of the stochastic case where one chooses to roll 1 D 6−2 rather
than deterministically take 2%. This could include deriving the distri-
butions of the stochastic analogues of sn and tn, as well as the distri-
bution of the first-hitting time to reach a desired skill level.

Working with the distributions of sums of large numbers of dice can be
laborious, but the Central Limit Theorem would permit one to draw
on existing results about Brownian motion.

• Profile-guided optimisation of decisions about which skills to train for
how long. Since most skills can be increased through practical adven-
turing, one will often wish to save training hours for skills not amenable
to the former. These include skills at either low percentages, as well as
some academic skills that cannot benefit from adventuring.

Some back-of-the-envelope calculations suggest training should not be
done on practical skills above about 30%. Using statistics collected
from real gameplay would assist with the development of an optimal
regime for strategic character development.

14

A Tabulated results

Number of times to increase skill
Skill 5 10 15 20 25 30 35 40 45 50
-5 7 52 147 292 487 732 1027 1372 1767 2212
0 21 91 211 381 601 871 1191 1561 1981 2451
5 45 140 285 480 725 1020 1365 1760 2205 2700
10 70 190 360 580 850 1170 1540 1960 2430 2950
15 95 240 435 680 975 1320 1715 2160 2655 3200
20 120 290 510 780 1100 1470 1890 2360 2880 3450
25 145 340 585 880 1225 1620 2065 2560 3105 3700
30 170 390 660 980 1350 1770 2240 2760 3330 3950
35 195 440 735 1080 1475 1920 2415 2960 3555 4200
40 220 490 810 1180 1600 2070 2590 3160 3780 4450
45 245 540 885 1280 1725 2220 2765 3360 4005 4700
50 270 590 960 1380 1850 2370 2940 3560 4230 4950
55 295 640 1035 1480 1975 2520 3115 3760 4455 5200
60 320 690 1110 1580 2100 2670 3290 3960 4680 5450
65 345 740 1185 1680 2225 2820 3465 4160 4905 5700
70 370 790 1260 1780 2350 2970 3640 4360 5130 5950
75 395 840 1335 1880 2475 3120 3815 4560 5355 6200
80 420 890 1410 1980 2600 3270 3990 4760 5580 6450
85 445 940 1485 2080 2725 3420 4165 4960 5805 6700
90 470 990 1560 2180 2850 3570 4340 5160 6030 6950
95 495 1040 1635 2280 2975 3720 4515 5360 6255 7200
100 520 1090 1710 2380 3100 3870 4690 5560 6480 7450

Table 1: Number of hours to increase skills chosen number of times

15

Hours invested
Skill 5 10 15 20 25 30 35 40 45 50
-5 4 5 6 7 7 8 8 9 9 9
0 2 3 4 4 5 5 6 6 7 7
5 1 1 2 2 3 3 4 4 5 5
10 0 1 1 1 2 2 2 3 3 3
15 0 0 0 1 1 1 2 2 2 2
20 0 0 0 1 1 1 1 1 2 2
25 0 0 0 0 0 1 1 1 1 1
30 0 0 0 0 0 0 1 1 1 1
35 0 0 0 0 0 0 1 1 1 1
40 0 0 0 0 0 0 0 1 1 1
45 0 0 0 0 0 0 0 0 0 1
50 0 0 0 0 0 0 0 0 0 1
55 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 0 0 0 0 0 0

Table 2: Number of skill increases possible for hours invested

16

B Plots

0 20 40 60 80 100

0
50

0
10

00
15

00
20

00
25

00
Plot of time taken vs skill attained (s0 = 0)

Skill attained (%)

C
um

ul
at

iv
e

tim
e

ta
ke

n
(h

rs
)

References

[1] Steve Perrin, Greg Stafford, Steve Henderson, and Lynn Willis.
RuneQuest. Avalon Hill, 1984.

[2] Timothy Rice. RQ3 Training Calculator. notabug.org/cryptarch/rqt,
2018.

17

https://notabug.org/cryptarch/rqt

